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EXCITATION OF ATOMS BY ELECTRON IMPACTS,

~ AS APPLIED TO THE EXCITATION OF RESONANCE TRANSITIONS IN THE ISOELEC-—

TRONIC SERIES OF LITHTUM AND SODIUM.

by

Oleg Bely, John Tully and Henri Van Regemorter

Introduction
The first part of the article reports on the methods of computing
excitation cross-sections of‘neutral atoms and of positive ions.by elec—.
tron impact. The article demonstrates that it was necessary to consider
both the ion field distribution and the effect of strong coupling in the

case of positive ions and optically permissible and intense transitions.

"The collision ion is represented by Coulomb's waves and the strong coup-

1ing$ are taken into account by applying variation methods in computing
the matrix R instead of computing the diffusion 3 matrix —-— as in the
Born approximation.

We have applied, in the seébnd part of the article, the theory of
the Racah tensor operators to the calculation of potentials intervening

in the collisionvproblems. This method permits the computation of ex-

O



éitation cross~-sections of atoms ané complex ions possessing more than
~ one electron of chemical vaiue. The computations were made for applica-
tion in a very éeneral case -— for compléx transitions —-- and may be
used in the majority of cases involving possible transitions. We did
not calculate the exchange potentials. |

The third part of the article deals with the application of'the
method to the computation of cross-sections in the case of resonance
transitions s — p of isoelectric series of lithium and sodium.

All these various appfoximations are discussed and the results
are compared to those oﬁtained by using the method —- exéessively work—
consuming -~ of éolving coupled equation problems as well as to those
‘obtained by the easily calculated abpréximations of Bethe and of‘the
"collisilon impact parameter". It has been.confirmed that the impacts
_;corresponding to the large kinetic moments are predominant with the ex-
ception of areas close to the excitation threshold. Consequently, semi-

i
classical approximation may also yield good results as well as the sim~

' plified approximation of Bethe —— with the provision that the effect of
strong cauplings will be taken into account.
1. Method of computing excitation cross-sections
The investigation deals with an atom in the 1;LVRSM8; étate, where
alpha designates the configuration and the intermédiéty“céuplings of
the atom LSMLMS is the orbital angular momentum, the spin and their pro-

jections upon the axis of the Z. The state of the atom will be wholly
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characterized by the skew—symmetrlc amplltude probab:llty “(al\lsw ]R
where I% represents the gJ_oup of coordinates rl, rz, sy ;:1 . of the N atom-

~

-
ic electrons (r= (ri, 1y, G;_))~

{
N

In a collision p?oblem an electron characterized by its initial
veiocity rate ihand by the projection of its spin mg upon OZ passes
close to the atom. Upon the collision the atom is in thé“”;djxtsmﬂ-
state and the ultimate state of .the collision electron is characterized

>
by v'and mé.
We will use the following atomic units:
(m, =e=4=19).

Instead of dealing with velocity we will define the impulse
_? Fﬁgﬁ;ﬁﬁ-“‘i§ numerically equal to the kinetic energy of the electron in
uﬁits of 13.60 e V, and m is the mass of the electron.

The amplitude probability represents the primary electron associa-
ted with an atomic level and it can decompose into sub—waves.correspon-

L

ding to various ofbital\angularA moments.

- olF, ) = o(F). 8(ms | 0) = > olklmma). ~ (1)
TheAwave function in the overall system —- atom and electron —— l

will bUild'iﬁselfbup in‘anordance with the added kinetic moments pro-

perties. If L* and 5" 'designate the total angular moment .L+7 . |

; > :
and the total spin S + 8 of the system with N + 1 electrons, we will

b

" obtain when presenting coupled moments :P==aLSHﬁMﬁFM; the fol-

lowing expression:

2 LT 8}sT : .
W] R +l) - Z CMLmMTCMSM‘M.; ] R
MLMS . ) (2) .
mym,

X ‘F(QLMLSNIB I R klmzm, I TN+1). !



This wave function will not be skew-symmetric in relation to the
exchange of the N + 4 electron with one of the N atomic electrons.
If the exchange is disregarded, the solution of the Schrédinger. .

equation of the system:

—

[H(ﬁ,';,.ﬂ) —E]¥(R, rn41) =0 (3)

could develop along the following:

YR, Turs) = Z‘I’F}an.n..;. @ ‘

However, if the exchanges are to be taken into consideration the’
total overall system should be represented by a linear and skew-sym—

metric Cbmbination of the type:

- _I)N+1i
¥= ZZ VNF

- e
I"lr,, Fa oo Piety Tidd oo Tndhy Ti)

- — -

c-(3)

i

‘where the angular-mément I of the free electron is affected by the elec-
- tron i. : : S i
Radical equations. -—- The cross-section is affected by the asymp-

tomatic shape of the radial functions of the collision electron. We

" will, therefore, develop the radial component in
(p(klmlmal TN+1) = 8 m,[ 6N+1)Y’ml(rN+l)ﬁ rkl("‘ux ‘6“

where the Y, (£) are the normalized spherlcal harmonics, such as:

1 ~
f YD) Yim{r)dr = SuSmm’ 0)
—)\

with ¢ I———Iet dr = sin Odadcp

It is expedient to 1ntroduce the function, as suggested by Percival

and Seaton (13) in the coupled development T
-~ ul % 'l'-
‘Y(F I Rry+10n41) = Z CMI‘VIMTC:I:WISM \ !
M, Mgty : v (S’ !

P(o«LSM M, | R)8[mts | o +1) Yimy{rx 1)
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function of all the variables with the exception of the radial variable

r -
n+l

In this development the wave functions of the overall system will

be as follows: -
‘I’(F, | ﬁ.;N-I-l) - ‘ )

= Z‘F(I‘I ﬁ;;l+10'N+l) ! Fr(l'| rasa). (9)
T ~ ‘

' 4+1

The asymptétic shape of tlis wave function contains a plane wave
associated with the ;nitial atom and with diffused waves associated with
all other atoms. Hére f‘, is the initial state of the.system.

. In order to determine the radial equations which must satisfy the
Fruvf’y+h‘we shall isolate the radial components by effecting the scal-

ar prdduct ) ) ) _
JU (T IR s 100 ) [ H—ETT (T | R 1)1 dre s g5
' {10}

. A A~
integrating in the entire space R, ryiy Gusr

The total hamiltonian will be presented as:

™~
R, Fas] = HR) + HFara) b > == (31)
, : ‘ i=1 '

Hi(R) is the atom hamiltonian and affects only atomic wave func-

tions. 7

Fu41

-+ 1
Hz(rn+1) = - 5 AN+1 -

is the free electron hamiltonian in the nucleus field. Z is the charge
of the nucleus.

’rN+1 i is the distance between the collision electron and the
?

" atomic electron i.

On the other hand, the total energy of the system is preserved:

i [

. :
E= E¢+§/<:=E¢'+;I‘:' (12)



where a shows the state of the atom aLSM/M,.

Radial equations are obtained:

[ 11_2__{(—\!-’———_*")+~2’—Z—+k;]Fr(P'lru+x) \
Wiher T TN+l . ‘ u‘
V=2 ) VerFr(l | res) (13) 0

< . a

~
)

with : B
Ve Py opa) = f\ P2 (R P4 10m41) '
l

N

L . S
Z,.N+m‘Yr'(in"N—f-lUN-l‘l)dnd"n+ld0n+)- H(14)
i=1

! | .
Thus, we have to solve a system of coupled differential equations.

Tn the collision problem if the total angular momentum and the total
. ' IS 1 IR S L L UL T
spin are preserved §?d we gbtaln L =L, 85 =8, ML = ML , MS = MS .

In addition, the,VrpHpbtentialq in the LS coupling are independent of !

' T T _
fST and independent in the choice of axes, thereby of MS’ ML. The radial
functions will therefore depend only upon the parameters of aLSKﬁJ }

! \

In order to solve this type of equations system, even with the
aid of computers it will be necessary to make various approximatioﬁs;
Tn addition to limiting the number of the alphalS levels of the atom we
will have to disregard the continubus states implied in principle in the
summation of equation (9). If only two levels are investigated, for in-

stance, the alphalsS initial level and the alpha'L'S' final one all the

processes: s
al.S —» &"L"S" — «'L'S

will be neglected which could disturb the «LS - «'L'S" process. Coupling

between various states of the system is a direct result of the coupling



between the preceding equations.
In accordance with the prihciple, of conservation of parity we must

have: (= apHl= (Y (15) ’

Born and Coulomb-Born Approximations
We start by disregarding any coupling between the states of the
system. We call I'ithe initial state and I"} thé_final state. The to-

tal wave functions will then be reduced to:

- —~ . 1 - .
W(Pl Rr,.+,)=‘Y(F| an.f.,cu.;.;)-’:-:l'rr_(rl "N+1).( 6)
’ 1 ;

© The radial equations will be reduced to. two uncoupled equations:

& 41 22 2

T—— . —— — ka F F N '

[dr:'ﬂ Tat1 + Trts +_ ] F(_ l'r # ' |
= ZVI‘I‘FI‘(PI "N+1) (17) ‘

'+

2 rn 27

d _l(l +l)+_-+k:' T | rnga)e

dry 41 e ! ! '
'=_2VI‘T’FI"(F' | Fn+1)s

In the Born approximation only the asymptotic form of the potentials \'rrf

t

is taken into consideration. For rw4: 27 we have ryii=Tx+1  and \
) N\ N

'n+1

Vir =

In this manner two equations of the type:

2 ' ! Z'J'_"\, !
[ & W) 2 x)_{_kz}pk,(,ﬁ,):o (18)

2 2 s
dry 1 Tx+1 R

are found, where the radial function depends only upon k, 1 and Z2 - N = z.

In case of a neutral atom z = 0, the two conditions for limits are:

F20)=06  Fir—> o) — k=12 sin [kr—%‘] (19)

we obtain, in fact:

Fi(r) = k=2Pi(kr) o (19)



with

nkr

jithr) =[5 St

where J is the Bessel spherical function.

1+
In the case of an ionized atom the same approximation will be desig-—

nated as the "Coulomb-Born approximation' to precisely poiht out the

fact that the Coulomb potential has been taken in%o account in z/rN+l

while determining the radial function.

The two limit conditions are:

PO =0 Eir > o) = ket sin [hr — 0

-+ ilog (2kr) + arg l‘(l +1 - '7\2)] (20)
It can be proven that:

-«cn‘ 2! E;e .3 ik 1

() = m—me F(l + 11— I-‘_')l\"l/“e '(/\‘r) +1

F[l+ 1 — i{, 242, — 2ilcr] (21)

wherevf(a,b,t)'is the confluent hypergecometric functibn.

In the Born approximation —— as can be now observed —— the fuﬁc—

tions of an approximatea wave of the collision electron are plane waves

both’éftér and prior to the collision. When they are computed no con-
sideration is given to the disturbance due to waves diffused by all pos-
sible states qf the system.

In general, solutions of coupled equations do not have the asymp-
totic forms (19) and (20).

If we would like to present the system in the state T' we would

4



have to know all the functions Fp<(L'|r) —- each a function of one
] ' ’

of the states F”’possible_ih the system. =

Each radial function will have an asymptotic form (16):

FeoTfr) == /\‘53/2[3[‘[" sin (A-”} - %T—t)

. - (22)
-+ BI‘I" cos (k”r — _l?ﬂ:)]

for the neutral atoms. For positive ions it is sufficient to substitute

the sine and cosine functions by:

U'n 2

whu;+pmmww+mgdHﬂ~%)

When the coupling is disregarded (I"=T) the forms are easily detected

(19) -and (20). The terms of the matrix k called the reactance matrix,
ﬁir'ShOW amplitudes of diffused waves which correspond to all possiblé

stateS»éf the system.

‘ Upon a numerical resélution of the differential equation system (13)

lit is possible to conceive the definition of the terms of the R matrix

|

‘starting from the asymptotic forms of solutions.
Variational Method Applied to the Computation of R

In order to compute the termé of the matrix R it should:be possible

to solve, in a precise manner, the equation of the system:
[H(R, 7 — E]¥R, ) =o. (23)

We have disregarded the exchange and we have seen that in order to.
solve the system of coupled equations we should limit ourselves to a small
number of states. In the Born and Coulomb-Born approximations, we

have substituted in the total hamiltonian H and the terms of electro-—-
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x |

i J
static interaction Z by their asymptotic  expression | .
I+1,i g R L ITN1
i=1 ; .
Instead of: - : , ~
— . T I a __l‘_ I (’, \ \
H(R,7) = HR) — 5 Vv~ 7 swvpl LI
l

i=1
we have, in this last case, used the approxunated hamlltonlan H' as:

N

O N . .
H—H = z — . {23
) I1,i Tx+1 23)

i1

H' is, then, an ap_proximated hamiltonian. We can solve the equa-
tien: ©[H'— E)¥r(Rr) =
whose pfeeiee-seiﬁtione “are approximate functions g, '

By generalization of the variatiohal method ef Hulthen and Kohn (12)
applied to- an inelastic case it is possible to find ’;:he precise expres-—

sion for terms of the maltrix R in relation to approximate expressions

and ekrors 3% related to the wave functions.

Rrp (exact) = Rppr (approx. ) — 2Lrr
—2 f SWi[H — E]S‘I’p'dr aip (20
~with: . o
Lrr = f‘I’HH — H']¥rdrdR (27)

where H is the exact hamiltonian.

A very satJ_sFylng evaluatlon of the R terms can be arrived at by
disregarding in the Rrr' (ekdut)exprebs1on the square- law terms in relation
to 8¥ errors.

In the approximations of Born (B) and Coulomb-Born (C.B.) we have
seen that all the coupllngs were d.lsregarded and that eswnptotlc forms
of radial functions ITF/(_I“[r){ were presented by (19) and (20) for I=1I"\
For T£I, hov:lever, there is: Fpr(l|r)=

Consequently, the terms Rpp'.\ (ai:»proximate) .are zero and we obtain sim-



11
ply: RIS = — zf‘i'i« (Born) |H — H’| ¥r+ (Born) drdR
(28)

with H - H' given by the equation (25).
This .last expression should be correlated with that of the poten-

tials Vpp. We find that:

*; ¢ (Born ou Couroxp-Born)

[ . N
'zJo hkdr“+l)[vFP'—“SPP"‘_"]Fk1<VN+q)drN+1N

'n-ta

(29)

The radial functions FMUN+J5£ positive ions (C.B. approximation)
. are given by equation (21). Satisfactory results may also be obtained
for terms of the R matrix by using solely the approximate wave functions:

plane waves in the case of neutral atoms, Coulomb waves in the case of

positive ions.

Expressions for the Collision Cross—section
We would like to compute the collision excitation cross—section of
an atom passing from the state alphaliS into the state alpha'L'S’.
In preéenting. v = o LM, SMlmym, affer summation for all the final
.sfétes and the avefage for all the initial states (2L + 1)(2S + 1) times

decomposed and on incident spins we have:
Y -

T0alS - a’L'S’]
I 1

:2 [Ty [} ‘in units of mag |(30)
MM MM g
nymim,m "
Y

2/\': Wars

oye= (2L + 1) (25 H 1] is the statistical weight of the initial alphalsS level.

" The preceding expression allows the computation of any cross—
section of neutral atoms énd any inelhstic cross-section of positive

jons. The matrix T is expressed simpiy in terms of the diffusion ma-

¢
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trix S and this in terms of the R matrix (15).
‘ ' T T ) T
Inasmuch as the total angular moment L'M" and the total spin S M

are preserved separately, there is an advantage in using the coupled ex-

pression [I'= «LSILTST™ M, in which.ieach wave function.will have the
form: » T .
| Pl = D | DR, - 6

¥y

 The unitary matrices of transformation are expressed in terms of

Clebsch~-Gordan coefficients:

L . oY — Qg g n LT sisT
D)= (01) =SS LY SLI Gl oCll e
(32)
The matrix T is transformed following: '
Ter= 2| Dol (9. (33)

O rr :
The collision cross—section is independent of:

[ ad~y _._I.__--———-I —————I T b . v
Q[aLS»aLS]—zlc”ZS—HzL—i—i Z ITer e (30)
e ”’I.TSTM:M: !

i

The TI' expression repr'esénts the matrix T at this point as being

T

diagonal in L‘I1 and MT, in S° and MT.‘ The system being invariant due to

: T T . .
rotation, T is independent from ML and MS. In coupling L — S, T will

, _ T - T
not depend upon.the total spin ST. There the 2L~ + 4 values of MS cor—
. e
.. T
responding to 5.

RN I
2k225 + 12L 1

Z (2LT+ ! )(ZST+ I)ITGI.SILT, a'l.'ls'l’r."' l2

ULTs™

\ Q[aLS — «'L’'S'] =
(35) .
|

3

In the coupled expression, “the summation is reduced to the summa-
tion of the three variables ll'_L,T, LT may possess all the values:
IL—i], |[L—td1], .00y [Lf1].
The T ﬁatrix and the R matrix are comected by means of the exact

lation (15): T _ 2B
relation (15): T TR (36)
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The R matrix is real and symmetric,‘ It is easy to demonstrate that the
T matiix is‘symmetric and fﬁat the scattering matrix I — T = S is uni-
tary;

1+ R ’ i
=T _:R (37)

= S

from where S + S = 1 = 8s* (A*= an associatea_transposition).
Physically, this means that the scattered (diffused)‘flux equals
the incident flux. On the other hand, due to thé"fact that T is sym-—
metric, the probability of the alphals state being excited to the
alpha'L'S! étate equals the probability of the inverse (reciproéal)

processs:

(28 + 1)(2L + 1)i2Q[oLS — «'L’S)

8
= (28’ 4 1)(2L" + 1)K2Qa'L'S" — oLS]. (38)

By computihg the R matrix by an approximate and variational method
and then the T matrix by means of equation (36) we have certainly veri-
fied the principle of flux conservation, in other words we have a unita-
ry scattering matrix. Seaton (15) has demonstrated that much better
results were obtained in this manner than by applying the variational
method directly to fhe computation of S.

" This last method aﬁplied to the Born approximation would have re-
- sulted in:
T = 2iR (Born) = ' - (39)
which is identical to (36) only for ail R{rl’«ij : flthus"T<< 1l

We will designate the results obfained from the preceding equation

as Born I, and those obtained from the exact equation below as Borﬂ IT:

b 2:R (Born 1
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An analogous formula would be obtained in the case of positive ions
(CBII and CBI). |

We seebthatAin this manner the effécts of coupling héve been taken
into account in an iﬁdirect fashion and only to a certain extent. If,
in the Born and the Coulonb-Born approximatioﬂs they %ave been disré—
garded in favor of calculation of the wave functions and of the radial
functions, fhe,formula (40) shows that'the computation of each term‘of

r ;is affected by~all thé R terms which cannot be disregarded. We

- can ‘state that the method II considers all effects of strong couplings.

Born énd Coulomb-Born Approximation.
Calculating Terms of the R Matrix

‘The R matrix tefms are gilven by the equation_(29), where, fof reas-—
ons already explained ws may replace I by>&LSHﬂ.;

In thé following chapter we will deal with tﬁe‘éomputations of fhe
i\@jf{pdtentials in fhe general case of complex atoms. Keéping in mind
'théﬁapplication to the elements of isoelectric series of Na and Li, we
shall start by the simple case of positive atoms orJions possessing only
one electpon outside of the cldsed shells.

Ve = [ (0170 W P e, (a1)

We will use the multipolar development of ﬁ?l;n the Legendré.poly—

. . I AN AN . v
nome series: = Epﬂr,rﬂyﬂm,h) (42)
N 12 A

with

‘ \

Ap A1 X
C ry/r for rp>r
YA(ry, 1a) = - : ' (43)

rﬁ/ri""1 for >,
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Based‘on the theorem bf addition of'spherical'harmoniés:
Pa{ry 1) = 21 + - ZYM (r)Y3,(r). (44)
It is thus possible to develop the integral (41) in.terms oful\[and
to separate the radial integral drom the angular summation.
We will always have S =S5'.= % in atoms with one electron valence,
the configuration will be determined exactly by the main quant number n.

Thus, in the coupled presentation we will have for j3¢=$:

~ B

’L”’)\ )

7

We can state fhat‘the only contributions (see II) which are not

R{nLIL* ) n'L'U'L7] = (n LIL~
LEJ L_F_J

"12

zeroes are those for which:

By ()

L4?L'+-kctl4‘V-F%fare even numbers.
4 |

It is easy, by using the multipolar development of ryfand the wave

functions (31) to demonstrate that 1*% ' can be presented as:

T Rpp' = — 22/)\ LIL'UL®)R (42 : )
with: |
I 1 . le. LT » . _
| /}‘ = 27\4—{—- I z MMMy Cm’mlm J‘Y YMLYL M dr, | |
MM mm’y R
X le.mYN‘-YVM'd"z (48 :
_vand:'_ - —

(o= [ TRt [ T Patr Prctrindn (a0
where the functions PnL(r) are the radial functions of the wave func~

“tions of the optical electron:

. - ~ 1 ! ot
¥(nLM, | r1) = You(rs) 7 Pralra) . (507
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By disregarding the spins in (8) we obtain, in fact:

mmmT

WER) = D Com Pl M T )Y (51
MLml .
By using the composition equation -of spherical harmonics:
[PVl Ve |
_ _ [(zx+ (L + r)}"*cm o O
_\/Et 2L+I M UM 000

as well as the relations between the Racah coefficients W and the Wigner

coefficients 3j we arrive at a result which will be determined below by

the method of tensor operators of Racah (9) and (14):

fr = (LIL™L | Py(r,. rs) | L'ULTML)
= (2h 4 1)Y= 1t T (s3)
x [(2l + 1)@l + 1)(2L + 12’ + ]
‘ ' CIACHMW(LILY, L7A),

- '

The f;(LlL'l’I‘A‘X){ coefficients have been tabulated by Percival and
Seaton (13).

In tﬁe radial term R, the radial functions._ Fia(rz) are given by (19'")
for the neutral ions and in(21) for the pbéitivé ions. We shall use the
‘most suitable ones at our aisposal when working with radial atomic func-
tions PnL(rl):

Let us take:

) -]
YA = fl) Yl(rl"z)pm,(rl)Pn';,'(r,)drl.

In accordance with (43) we can write:

1 [r )
i =% f " Pa(ry) P ()
2
[ . (54)
+ L PnL(rl)Pn'L'(rl) A_-f-_x drl.
ry ry

It is expedieht to decorﬁpose YXinto two parts, one representing
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“the long~ range act_ion [ra > ) , and the other which converges rapidly:

L

1 [ . ‘
Y, ’z) = r)‘—.H' J.o PniProwndr, + ZA["L: n’'L’ I r,] (55)
s : :

with o .

’ .. @0 I 1 © T )
li=ry f PrlPui 5 dn— 50 f Pnnpn'n'r}drl-l {56)
L] ry rs Ty .
Thus, the R, may be expressed as the sum of two integrals; the

First can be calculated by the analytical method; the second, Which de-

pends upon the atom properties, converges rapidly:

© b dry
$ = J. Pua(r)Par/(ry)ridry f , FuFrv rT%‘
’ - : (57)
-+ j Za(nLn'L’ | ry)FaFvdrs. ‘
4]

Tn the case of neutral atoms the integrals:
, dar
) f F.F rr+1
are reduced to integrals: -

J‘ ) Ji+ i("’)Jl’+g(/cr)r“;\dr.
L]

In the case of positive ions, the Coulomb integral:

L= fFl7'r‘l”?(lr

converges very slowly for A = oi and 7\:_"} LIt is possible to find for
them analytical expressions (20).

We recognize inﬁ \ the integral f :o .‘l'—’P’er.r"‘| which ir;telfjvgnes in.
the calculation on the probability of radiative transition S$,(nL, n'L’).

We have, for a dipolar transition:
2

S,(nL, n'L") = 2L> (58);

J: PnyProvrdr
where Ly is the largest number (combaring L and L').

Having computed in this manner the terms of the R matrix we obtain
T by means of (36) and the component Q(nL »n'L') by using equation (34).

. . . T I
Upon summation with S° we obtain:.

2 8 I I 4
Q[nL — r'L'}= kTM T Z(ZL“—}—I)] rm.h.T, T I
ULy

(59)

v

s
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In order to reveal the contributions of various kinetic moments we
will sum up with the'1l and“1l'.

If we express the collision cross-section as a probability function

Q, 1) :
i
Q(i,j) in units of way (60)

Qi > i) = 4o

wifh

Q[nL, n'L’) = ZQLT
. R . : (61)
QLT = Z(ZLT + I) I TnlJl.', n’LiLT lz'

w

II. Generalization in Cases of Complex Atoms

In cases of atoms possessing more thanvone outer electron outside
of closed shells, theVp. potentiéls and the terms of -the R matrix are
computed by applying the tensor operators theory of Racah.

It is clear from the very expression of these potentials that there
is little difference between computations used for them and the computa-
tion of the matrix elements in terms of Couiomb interaction of the atom
hamiltonian, elements which intervehe in the calculation of energy le-
vels when the configuration interaction is particularly taken into con-
sideration. It is well known that the Racah methods for complex atoms
are very efficient for such cases (9) and (14). As far as we are con=
cerned we shall apply ourselves to the computation bf tha\qqu-potentials,
disregarding in the present article the exchange potentials and by con-.

sidering the case of the LS coupling.

If,. for example, we study the excitation of the Fe XIV(4) we will
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.find allowed tranéitions of ﬁhe JSV;R~¥3mp’ : tYpe cbrresponding to
the excitation of an electréé‘iﬁ ;h inner shell.

Similarly, all transitions between the fundamental level and the
first excited levels of such.elements as Be, B, C, N, —— transitions
‘ which cofrespohd:td the impoftant ultra—violef rays, are of the 2s*2p"
;-2s2];"+-1.‘ type. |

Consequently, we‘shall give a privileged treatment to the compu-
.tations of transitions of the type: )

I'n=plp —> I'n—p-1p+1

and present the results for other types offtransitions below.

The results are presentéd under a very general aspect as functions
of algebraic coefficients, bérticularly the W of Racah, the X of Wigner

and the fractional:parentage coefficients (see appendix-C. Messiah,

Quantum Mechanics, for tables). The calculations here are presented

for the purpose of future use in the computations of cross—sections for

elem=nts of the series Be, B, C and N.

Expression of Potentials. — Let us return to the expression (41) of the

‘

. Vrr' :

e : N

. VI‘F'(’N+1) = f\yi‘(—ﬁs/"\n-%h UN+1)[Z . ]

41,

i=1

(41)

‘Vr'(ﬁ, /"\N-H, GN+1)dﬁ-d¢N+ldoN+l (I" # P’)

where the functions ¥ are skew-symmetric only in relation to electrons

1, 2,00e0e0, No " In this presentation, the collision electron is charac—

terized by its kinetic moment ('i& before the collision,”lfiafter the

collision) and the spin of 4. Thus, we can still write Vyrr  under the
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more symbolic form:

N

2
TN+1,0

i=1

’ |
Ver(rasa)l= (aLSl, % L™MIS™?

(62)
«'L'S'l} % LMF STMY’)

where 1t is understood that the scalar product does not affect CNe1”

Instead of representing the total system by quantum numbers  «LSI%L™;S™,

we may also present it by an assembly of quantum numbers as follows{
aLSM,%em,l™M]. . In fact, all the operators associated to these quantum
'_numbers inter—commute-and,vconsequently, this assembly oquuantum num-
bers is an assembly equivalent to the precedent. ' We may, then, write
Vope in the following manner:

Vnhwﬂ==§k$%9MﬂS%Mm”

MoM
878
L ’

mgmg

(S" Y Mumy | S’ % STMT

N
Z ;
N 41,0

i=1

o/ LS Myly Y myLvN]) N

» .(chLSMsll Yy msl.™;,

oo (63}
j; I .
Inasmuch as ZLi.rs1i  does not depend upon spins, we have:
i=1 ! : .
M=M_ S=3 and m_= m'
s . s . s s

The summation becomes:

VPI"(rN+1) = Z (S % S™; | S % Mams )

M. M,

3s

(S % Mam, | S 1 57M;)

J(«LSMyl, ¥ mLeM? «'L'SMal; % mgL'M])

N
Z -

: 'N41,1 |
i=1 ;

(64)

The (0,3 IM | fafsmamg ) are the Clebsch-Gordan coefficients ex—-

- Fdgd
pressed otherwise as:  Cmmun

We will now transform:

N

D
Tn+41,i0

fen1
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As in (42)

/. .Z"NH:_Z(ZW P+ 1,0 Pari. rN'H)) (65) |

- i=1 A=0

: . | -
Pya) g the polynome of Legendre of the A order;
| LR
a{rn+2,i) = 373
r>

where r_ is the smallest of the lengths N+l and r. and r, the largest
o

of the lengths L and Lie

v

Using the theorem of addition of spherical harmonics we may put

this in the follow1ng form:

’ Z N4 (Z 22 + I W(rﬁ‘*"."}Yi"'(/;NH)YMG))
= i=1
(66)

fully utilizing the fact that

Yiu(r) = (= Yaou(r)

and presenting:

~ l/ﬂ ~
0 = (55) "

we see that: z i

N 41,8
i

may be presented in the following forms

Z 1
Ix+1,8

_; ; Z(—*)“(i "N+1;)C""( ))C(A)( e |

i=1

(67)

|
i
|
I

, _ !
Now, this appears as a sum on A of scalar products of tensor oper—
' . . ' . ato
ators, the first acting on the angular variables of the{/- e second,

.on the angular variables of the incident electron. Setting it more pre-

cisely the tensor operator acting upon the atom is:

ZU (6 Ty rn41) ZYA (ry41, 6)C 0\)’,:\) (68) i

i=1 (-=1
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.

while that which acts upon the incident electron is: CH,(7i,). /j;

N

In this manner ZS I

n41,i
i=1

is presented in the form:

N

rm+1,8 >

Penl '

(See Racah IT, for example).

We then have to work out the prbducts:

“ (s8MyL ¥ mgl, LM | (UM C) | o'SMsL’ % meliMTLY).

By following the same reasoning as Récah, we obtain the following

formula for this expression:

(=5MoL. % mgl, LTMZ | (GP).CO) | a'SML’ % mgliL¥MT) |

= §(L7, L™)3(M], MT )(— )=+V-t"W(LL,L/{]L) }
WL UM [ «/SMaL') X (% msly [|CP || % mal;) ~ (69) '

These are the reduced elements of the matrix (see Racah II). In the ma-—
(«SMsL i U ] «’SM,L")
trix element the scalar product affects all atomic vari-

ables. .We shall theﬂ notice thiselement:
((«SMsLi || UM [|'SMgL)).

. .
As for (Ymsh ||CP||%emsl)|, we see right away that it equals (LljCcmpn).

We can find in the Messiah book the properties of the W coefficients
: v W \ ) ) o .
of Wigner. yM. do not depend upon spins, th2 element ((«SMsL [} UM [| 2"SM, L")

will be nonvariant due to rotation in relation to spins, thus it will.

not be dependent upon MS' This fact permits us to make a summation of

the Clebsch-Gordan coefficients: - - --

{

~

Z( Sy S"'M;I S 15 Mgms ) (S% Mems | S ¥ STM:)_ = 1.
Msms . (70) :
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We have. for Vypp (ryg) :

A

Vrr(ra+1)

- Z(_)‘xﬂ‘”S(Lr, Le)5(S7, $*)8(M7, MI)8 (M, MT)
A

X (LIICMIjL) . W(LLEL, Lo) ((aSM,L || UM a/SM,L"))
where: : , (71)

N
Ay S .
UD(, &y rsa).

up =
i=1 - , -
Computing,Reduce-d Matrix Elements. — At present, we have not yet made
any supposition on the transition deemed possible and, consequently, it
is valid, irrespective of the I ;A I” value. (Let us note here that what-
ever this transition may be,|L ~L]<a<L+ L'accofding to the very de-
finition of these elements.)
In ordar to have the Vrr potentials correspond té certain given

transitions it is s_ufficient to calculate the reduced element of the

matrix: T = ((aSM,L ]| UM || 'SM;L")). (72)

We shall do so for the transition recorded at the start of the.

chapter: \
(ll""p(szl_Lx)lp(TzSsz)) (LS)
— (Un—p=1(z(S{L)p+1(x;S5;15)) (L'S).

Let us first present the projection of the angular moment of the atom

(in accordance with Racah II, formula(29).)
(_)L+ML
T V(LL'A — M.M.Q)
X (I nP(1,8, Ly P(1,S, L) SLMM,, | USY )
- Un=p=1(z(S|L) I +1(r;8;L;), SL'MsM;))

((aSMaL | UM |} &"SM;L))
(73) :

The ML’ M'L and Q are selected in such a manner that:

V(LL'A — M.M;.Q)
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be different from zero.

This will give us, according to Racah III (28):

T = (=) {(n — p)(p + DD (P=p(xSLy)
' Sabs .
} (Un-p-1(xiS{LI)US,Ly)
X [\'([JI.A’)\""' Mlj\‘[:‘(z)]g‘ ‘
(1, p(7,8,15,), SyLg | 0 +1(miSL3))
X (S{L{l(SsLy), SuLig, SL’| S{L3, IS,L,(S;L3), SL’)
X (8Ll - p(S1La), SoLiy, SLMgM,,
A - . ’ ’ ’
| U tn—p, n—p, rus1] | SiLiln—p(Sslis), S3L, SL MsML)))
: (74

The coefficients

(In=1(o, L, S))I1.S | | IneLS) are fractional parent-
age coefficients and make possible the separation of one given electron
from a group of equivalent electrons. As for the Racah coefficient:

(3,3.,(3,), S J!Jl, J 3,

1273 24 ): J)

5

they make possible the passing of wave functions obtained in coupling

Jl and J_  with those obtained by coupling Jl with the result of the J

2 2

and J4 coupling. The expressions for these coefficients are given by

Racah (II) and they are quite simply bound to the W coefficients (in
the case of an LS coupling). U* does not depend upon the spins and we
obtain immediately:

517 53

and, in accordance with Racah II (29),T becomes:

T=l— e ]t ((npeS,Ly
. . . ] _
[ onmp=1 (1S LS, L) (4, p(7,S,La), SiLL {r+1(=;8;L5))
X (SiLg, US1La), S;Ls, SL' | S;LilS,L,(S;L;)SL’)
X (SiLiln-p(SiLo), Seliy, SLMs]] -
UN(n — p)|IS1Lila—p(S,Ls), Saly, SL'Ms).  (75)
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We can suppress, in the last reduced slement of the matrix the
quéntum numbers related to the spin. Actually, U (n - p) do not de-
pend on the spins and the three groﬁps of electrons which iﬁtervene
. from the left and the right in the scalér produdt have the same spins,

' 3 and S

meaning Sl and the total spin being the same, we can, by re-—

2

vealing the wave functions of the three groups, demonstrate that the
geduced matrix{element is équél ’té
(L, taep(La), Lay LU — p) || Litn-p(Ls), L, 1))
Then, by successively applying (44a) and(44b) of Racah III:

\

((Lis G2 (L), Ly LUDR — p) [ Lifnop(La), Loy 1)) ,

== (— )M WL, LL LLAW(! Ly Ly, L) o

X [(2Ly + 1)(2Lg + 1)(2L 4 1)(2L" 4 1)]2/2((" || UM fj . 1
‘ . (76}

It remdins for us to evaluate (Uﬂ]UﬂKn—-pH“»:‘
: —

U?;. = ‘ﬂ(’n—p,r«ﬂ)cg‘)(" p)- .

The wave functions of the eieéEfoﬁéAafé; respectively:
P o) i o~ T
O(lny) = __"_‘(L’l_ll) Y;"l(,.n__p) o

. Tn-p P , i
. e o~ !
o(I'm}) = —"‘—(51) Y (rs-ph |
!

r

(the spins having been suppressed a little above.)

Consequently:
@NOWm— )iy el
=, Pl Pur(ridr x (107
= () (I CW 1 (77)

:(VHC*HD\ is a classical quantity equal to:l

(— W2t + x)(zi' + 1)]f/2 (é 2 i,) ot (33 g) ‘
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is a symbol 3J of Wigner.

Utilizing the expression of the coefficients of Racah given in

the book of Messiah, we put T in the form:

T=[(n—p) (p + V)% ((7PrSiLy | | U7P- 1(<{SiL)IS L) (1 1 CH 11D
(b, 17(5,SaLa)sSals | § P +173S5L5) [zs,+x ) (28; + 1) (2L + 1) (2Lg+ 1) ( 2L1+1)(2L +n]t \‘

X (WS, %598, Ya(rwn) D, (2L + WUALLILL) 78) \\
X W{LUIL LyLaLg) W (U LalLoLi2) - ';
' - Using ths= symnetrlcal propertles of the W, we can put the last
sum over L3 in the form:
(— )b--bfb{-" Z (2Ls + 1)W(L;LLL,L;IJ,)W(LILEAL'LI,,S)W(ML,L;l'L,,)
<~ . :
| which ié;pdssibly excepting a phase factor , equal to the symbol 9J of
.Wigner X (abc? def, ghi). : - : A l R
Thus, finally for T: . |
Tein—r )(p+l Va(zn prls Ly § [In=p=2 (28 L1)1'S,L,y)
X (L,lp(7sSsLa)i ik | § 2 +11i8 L) (VI CAIY) YW(S; % $5,5,5;) 79)

x [(28, + 1) (283 + 1) (2L + 1) (2L + 1) (2Ly + 1) (21" + 1) )] %
% X(LjLyl’, L'LA, LiLol) Ya(rn+1)

’ Taklng th1é¥éxpreselon into that of the Vppr, we will reach the de-

sired potential.

Starting with this expression for the potential we may see right
away what are the A’ which will'intervene effectively. In the ex-
pression of (V“Cﬂqu) there is the symbol 3J(lxl) which equals zero

except in cases where [4£ I 4 is an even number, which immediately
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determines the parity of A ""»q/f’ In addition, J.n order to avoid the (27;1;)}
be‘ing‘a Zero 1L is necessary to have thé; three numbers A and [

verifying the triangular inequalities, from where IV < AT
The same applies to‘W(l,Ll",__L'Lf)\)vwl'ri.cvh will not'be- a zewo only in the‘

case where the six factors verify, three to three, the triangular ine-

qualities (14).

\

~The Vpp Expressions for Certain General Transitions.

: \Eransmon 1 } . )

| In(aLS) — In(a'L’S") («LS) # («'L’S")
l Ver(rr) Z (AT LR L)3(ST, ST)8(ME, MY )3(S,5") 3(Ms, MY ‘

| a, 118,

i

|

x'(l‘llx)(m)hu.x>[<2L+1)(zL'+1> (2l + 1) (24 + 1)]* WULIL'L) - (80)

o (l"aS L, § ] | in~ l(aIS La)iS,Ly) (=1{aySLg)iS, Ly | § Ina’S, L) Ya( 1)

000 000 |
. % W(LLEL'L™A) . n(lnal$ | | im=eS;La)ILS) (v~ (aalsS, JISL' | | ima’L'S)

_ X Ya(rn+1) [ .

‘ _" Transition 2 : ‘ /
\ f i, SaLa)in(@S,Lu) |} LS | — | i3¥(mSsLa)in(a’S{Ly) § } L'S"} (aLa) # («'L3) |
{ ’ 4 ‘ :
Virl) = (=)t whierta(L, Le)s(sT, S7OS(MM ) S(MIM) - | '
\ e IRV AR . |
\ x 3(85")5(8,55) (O o O) (O o o) [zt + 1) (28 + 1) (2Ly + 1) (2L + 1) (2L + 1) 2L + 1)] % (81) |
‘\ X (20 1).n. W(ILyJL{LA) W(, Li;L'LeA) W(L,L'L,AL; L) :
‘\‘.

|

Transition | 3 : \

4 Un=p(, S 1 )iP(x,S, L) ) (LS) — { n-p=1(ciS|L)lp+1(7;S;Ly) § (L'S')

' Vrr{res) = Z(—-jn—ﬂwe;( L, LSS Sv)5(SS")3(MT, MT)S(M?, MT)

Lo
i

X [(n p><p+1 LN GICER S

x (l “) ”l' W(S; % 59:8:8;)W(LLLL L0 . X(LiL LIALLL) e

Un=p=1(xS;L 'S, Ly) (1, 1P(7,8,L0), S3Lay | § +1(=8;L))

000 OOO

X [(2S,+ 1) (25, +1) 204 1) (20" 4 1) (214 +1) 2Ll+1)(2L+1)(2L’+‘1)(zl,+1)(211—{—1)]‘/2
X YA("N+1)
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Transition 4 : ;
1 IS L) SiLa) |} LS | = § 8 (maSsLa) (1n=1(xgS, L)1) (SiLg) 1 (LS”)

Vrr'(rn'}x) - Z (= +1=t"+u[n(zL + 1) (2L’ 4= 1) (2Ly + 1) (2L; + 1) (20 - I)L(Zl' 4 1)

| : ’ ' Iy '
! : x (2l + 1) (2l + 1)]% (O o 0)w(tle'L;L.x)w(L,L'L.xL;L) 85
N 3

. X Y
! : : X (O‘O cl;)W(l!Ll;L’LT)\).(lﬂ(-.-lS,Ll) P (In=1(7S oL )IS,Ly)

X Ya(rm+2)3(S7, S)8(L7, L*')3(SS")3(M;, My )3(ME, M7)

lll) require zero or even A - for transition 1 and 2.

000
, f ) .
In the case where L+ L'+ A'is even, we can avoid a certain part of

We noticé that (

the work by utilizing the coefficients which wsre listed.in tables by
Percival and Seaton (13) and which have the great advantage of being

easily computable. These coefficients have the following form:

¥

: ' LU (L LA )
AGLELL) = [(24 + 1) (2 + 1) (2L 4 1) (L' + 1)]% ((; 0‘()) ( 500 ) (=)t =umW(LLELL™)  (84)

éQuivalent to that of formula (53).

ITT. Applying Resonance Radiation to Excitation

in the Isoelectronic Series of Lithium and Sodium
We have used the Cdulomb—Born‘method to calculate the terms of
the R matrix, the method called CB IT, where the terms of the T matrix

are given by the exact equation (40) as opposed to CB I in which the T

is given by the equation (39). As a matter of fact, in order to achieve
intense transitions in positive ions, it is necessary to take into ac-

count the Coulomb field which appears due t the residual charge of the

km,mm,mlu@oﬂmrhmﬁ,tommﬂdm“meeﬁ@ﬁsofs&m@:m@ﬁﬂ@.
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Solving a collision problem involves, first of all, a knéwledgé of
the amplitude probabiiities of the atomic electron. We have used, for
the 2s and 2p states of the lithium series analytical wave functions of
the hydrogenide order (24). The use of these simple forms for the above
series 1s justified providing it is apparent that the quantum errors
are small and the calculations of probabilities of'radiative tragsi~—
tions attain b? and large the same results, whethef'the Hartree Fock
functions or the.hydrogenide fdﬁctions are used as it is done, for in-
étance, by Bates and Damgaard (3). For 2s » 2p in lithium we find 0.75
for the oscillating force when using the latter method, which is pre—
cisely the result of the experiment.

For the states 3s and 3p of the sodium series we have used the same
.wave functions as we used for Mg II, Si IV and Fe XVI. For Mg II these
rfunctions have been computed by Biermann and Lubeck (6) in a Thomas Fer-
‘mi field, taking'inté accoﬁnt the.exchange potential and the polariza-
tion. The wave.fﬁnctions for Si IV have heen calculated by the Hartree
Fock method (11). The more recent calculations of Garstang (10)'which
take into account polarization effects do not modify, to any significant
extent, the preceding results. We have used for Fe XVI the wave func—
tions of Hartree Fockvwhich were kindly passed on to us by Dr. S.J. |
Czyzak.

‘Besides, in'principie, in the development (4) of the total wave
function 6f the system ail bound.states and the continuum of the atom

must intervene. We have reduced the atom to two levels, 2s and 2p for
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the lithium series and to és and 3p for the sodium series. We have
‘mentioned above the meaning of this apprégimation; Onlybintense
transitions generated from the p and s levels can affect thé Ccross-—
section corresponding to the transition s 1>gu"Let'us consider the
case of the sodium series. If —- as is the case,-— the rgsonahceltranr
sition 3s = 3p is optically intense (F is large ) in accordance with
vthe Thomas Kuhn law, the other transitions 3s — np will be weak. We
find that the most intense transition generated from 3p is 3p —» 3d.
Thus it is extremely important to take into account the level 3d; this
has been done in another case, involving the case of Ca IL (20) for
which we have demonstrated that  disregarding the 3d level is tanta-
mount to»overestimation of the cross-—section 4s =-» 4p of 25 p. 100. In
the Li and Na series, however, conﬁrary to what occurs in Ca II, the
energy of the 3d levei above the ground levellis of the order of three
times the excitation energy of the 3p level (or 2p>in_the case of Li).
It is quite possible to show that in this case the error made by disre-
‘garding the couplings with 3d is considerably smaller than 25 p. 160;
as a matter of facﬁ, the terms of the R matrix diminish with the energy
difference Ed-— Ep; _ |
Calculating the Terms of the R Matrix

Wﬁen_thztotal kinetic moment LT.is censerved, the elements of the
Rij matrix which correspoﬁd to two different LT, will be zero. Cope
sequently, the total R matrix (which is infinite) is placed in the form

of an infinite Jordan matrix, in other words as square matrices on the
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’ T
diagonal. Each of these matrices corresponds to a value L. For all
. : T
practical purposes only a definite number of values of L~ could make

a contribution to the total cross-section Q, as the elements of the

Rij matrix rapidly decrease with the LT. We will see that dependiﬁg
upon the énergy of_primary electrons we will haveuﬁo take into ac-
count 10 to 15 values of the kinetic moment.

With two atomic levels é and p what»will be the dimension of
each R(LT) matrix corresponding to the value of the kinetic moment?
By applying the coupled presentation - - as in formula (45) to a level
s (L = 0) we can associate only the kinetic moment l=LT in order to
obtail LT. At the level p we may associate the kineti; moments to the

primary electron:

[=Lv—1, I=L%, l=Lr—1

in order to obtain LT. The matrices will thus be of dimension 4. Ex-~
cept for the case of LTi: 0 where only LT + 1 can be associated to D
iﬁ order to obtain'LT. In thejcasg of'L?ﬁ O_thé-matriceé will}bé'éf
£he 2 order. The states of the system will be characterized by quan-

tum numbers: -
’ I'y = (ns, s, L7, L7) Dy =(np, p, LT — 1, L7
I'; = (np, p, LT, L7) Ty=(np, p, L7+ 1, L7).

The elements of the R matrix are calculated starting from the |
equations (29) .and (45). After having explicited tle slope coefficients

and in considering the equations (46):
Ry = — 2Ro(sL7, sL7)
Rpg = —2[Ro(pL™ — 1, pL™ — 1) .
4+ 0,2(L* — 1) [2L™ — 1]- % Ry(pLT — 1, pLT — 1}]
Ry = — 2[Ro(pLT, pL7) 4 0,2 Ry(pLT, pL7)]
Ryg= = 2[Ro(pL™+ 1, pL™ + 1)
+0,2(L* + 2) [2L7 + 1]% Ry(pLT + 1, pL™ + 1)]

LT \%
R“:_z[(é_u+3) Ry(sLr, pLr — 1)]



‘ LT+ 1\%
Ryy=-—2 [—- (_6—]_—‘;—-_{——3) :Kl(SLT, pLT -+ I)]

: 0,6 .
Ray=—2 [“ STy (Lr(r o 0) %Ry pLir—1, PL“*"‘)]

Ryy=o0 Ry =0 Ry, =o.
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In calculating the terms of the R ﬁatrig; és in the equations’(4l)
and (45) we neglected the short-range térms which are due to the closed
shells.

We will note that R33 is uncoﬁpled and that, consequently, it will

intervene only in calculations relating to the p> p transitions. On

- the 'other hand, the diagonal terms and the terms R the elastic terms,

247
rapidly become very small for Lr> 2 -as compared to the inelastic terms
R14 and RlB' This is quite fortunatebas their calculation by appréxi—
mation as devised by Born brings Very unsatisfactory results. We can
demonstrate, in fact, that radial terms-ﬁp‘ and R,;- are "short-range"
terms which essentially cause the intervention of small values of the
variable radial r, meaning of areas where it is impossible to:state whe-
ther the collision electron is placed in a Coulomb field. If diagonal
terms are to be taken into account and correctly calculated it is n=-
cesséry to solve the system of coupled equations (13). One of us per-—
formed this task.(S) and arrived at the following result: the solution
of coupled equations actually shows only 10 p. 100 difference with re-
sults obtained for the inelastic cross—section s =®p of Be II with low
energy, és shown by results obtained by usipg the CB ITI method, used
here disregarding the elastic terms (See fig. 4).

The cross-section Q (nL » n'L') given by the equation (59) will
bring about the intervention only of the le and Tl4.ine1astic elements.

We have now demonstrated fhat the influence of small Rij elastic terms

was small. The R matrix which we shall calculate will have the simple
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form: - o DRy Ry
Ry o 0

Ry o o

e =

(86)

In applying formula (40) to the CB II approximation:
. — 2iR,, o - — 2Ry,
—I+Rfa+R?4 “—I+R32+R:I‘

In the CB T approximation equivalent to the Born approximation:

T (87)
Rlz = - Ziﬂlz T" = — ziRl‘_ (88)
The cross—section will be'expressed as:
QrL =0, n'L’ = 1 ——L-—I—Z sLr 4 1)
L=o0,n'L' = ]_kfu,ZL‘*“I ( Jj+l)
: o -
[Th(L7 — LT+ 1) 4 T%(Lr — Lr—1)]. (89)
All calculations relative to.the radial terms R, i whose expressions

have been presented above have been built according to the methods ex-

plained by one of our group (20). by means of ordinators 650 and 704 IBM.

Results
Results for transitions 2s — 2p of the four elements of the Li
series and for transitions 3s — 3p of three elements of the Na series
are presented in tables I.and TIT. If is thus possible to obtain.by
interpolation the cross-section of any desired element in each sepies.

Table I Lithium series'angj)c{Q«jjib.

Be 11 . C1v 0 VI MgX i
X - ’
CBI ICBIIGRI  CGBINGBI  CBIHCBI CBII
|
I 14,23 19.983|5,015  4,669]2,526  2,456{1,208 1,200
2 16,73 13,44 |5,588  5,304{2,812 2,75411,318 1,307 '
3 17,80 15,03 5940  5,004|2,903 2,911|1,372 1,360 .
4 18,38 10,04 16,133  5,915{3,047 3,000(|1,404 1,395
5 18,96 16,95 6,209 6,074{3,180  3,137(1,433 1,424
6 19,58 17,73 [6,438  6,261]3,312 3,271|1,450 1,440
I
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Table IL

Sodium Series

, Mg 11 SV Fe XVi ?
+
X |
CB1 CBII CBI CBI | €BI CBII ;
i
1 17,69 11,74 10,47 9,351 L7120 1,696
1,5 19,89 14,60 1512 9,958 1780 1,742
a 31,75 16,98 1,73 10,60 18a0 1,784
4 27,41 24,02 13,65 12,88 1,952 1,939
In these tables we present the probability values (s -p) . bound

'

to the cross—séctions by the relation (60).

I3 I_____I____L T 0,
Q(nL—>nL)_.2 h k:LQ(nL,nL), (89)
in units of ﬁﬁ'
‘kiL is the initial kinetic energy in Ryndbergs. ' - |

The results are presented as a function of the relation of the

"initial kinetic energy and ths energy difference En'L'eaEnL: \

":L Voo . )

X= (Enses =~ En) Rydbergs - (90) | \

It should be noted while studying tables I and II that in the high
energy areas there.is but a small difference betwean the CB II approxi-
mation and the CB T approximation, whicQ is equivalent;to the Born ap-
proximation for neutrals.

On the other hand,.as we become.involved with elements more strong-
1y ionizéd, the CB I approximation becomzs better and sometimes even
sufficient, even at the excitation threshold ( X = 1). In fact, the
influence of the Vfr,.Foupling terms in coupled equations (13) becomes
secondary when the residual charge of the positive ion increases to a

large extent.
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The cross-section values are presented in figures 1 aﬁd 2; Inas-
much as these vary greatly as 2_4 (Which would be the case of purely
hydrogenoid ions), but more precisely as»the square Qf the relation of
excitation energies, we have transformed the resulﬁs in order to be able
to trace them on one chart.

It should be noted that in Figure 2 tﬁg curve relative to Mg IT
does not run aﬁove the two other curves as could have been expected.

The results presented in these figures are thdse obtained using fhe CB
.IT approximation; yet it is immediately apparen£ from looking at Table
II that in the case of Mg IT the effects of coupling (CB II - CB I) are
particulafly important. Tha resonance transition 3s — 3p of Mg IT is
‘highly intense (f = 0.90), thus, siﬁilarly,.the.elements of the matrices
R12 and Rl4; as we shall see later on; this fact explains the important
difference between the aépréximations (87) and (88).

The dipolar terms of the R matrix vary as A725£;L, thus they decrease
as Z ° in the first approximation. The coupling effects thus become
rapidly negligeable when Z increaées.

It would seem to be of interest to present certain.results in re-
lation to the contributibns fo different kinetic moments LT. We pre-
sentyﬁheﬁyglues of ?hg'(h7.-for Mg I1 and_Fe XVI in Eigure 3. We have:

Qinl, 'L = ZQ.J("L: L) (o1) ‘
We can see that the.qonzgibutions of small kinetic ﬁoments diminish

when the electron energy increases and also when the residual charge in-

creases. This contribution is always small and this is sufficient to
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justify the use of the method applied by us. This method is in fact
deficient for the small values of.LT which correépond to the "appro-
ximated" collisions for which £he exchange effects and the exact form
of the potential close to the nucleus are very important. As stated
above, we have also disregarded in the calculations of the matrix R the
elastic terms, but the latter intervene in a siggificant manner 6n1y

in the cases of LT= 0 or 1.

Q"=( Ey )2 Q
€42 (Mgll)

R, [ Eg
@ (E,;(Ben) )ZQ

Série du Lithium 2S.2P Serie du Sodium

50{

FI1G. 1. \

FIG: 2.

Consequently, if only a very limited confidence should be exten-
T '
ded to the results of.()L for LT= 0 or 4, the error mads in this man-
ner will affect in a very insignificant way the global result.f) .
The calculations in relation to the positive ions are, thus, much more

reliable than those in relatinn to neutral atoms, for which the small
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n -~ . MG
| /o \Xe Fe XTI

FIG. 3.

. values ovaT which correspond to the “approximated” cgllisions for which
the exchange effects and the exact férm of the potential close to the
nucleus are very important. As stated above, Qe have also disregarded

' in the calculation of the matrix R the elastié £erms, but the latter

| intervene in a significant manner only in the céses of LT= 0 and 1.

Consequenfly,_if-only a very limited confidence should bé extenQ’
ded to the resylts offlg for LT= 0 or 1, the error made in this manner
will affect in a very insignificaht way the global result . The
calculations in relation to the positive ions aré, thus, much more re-
'liable.than those in rélation to neutral étoms, for which the small
valﬁes of L? are more important-at low energies;

If we look for partial sections, which woﬁld correépond ﬁo the
transitioné'between_tWO definite levels by quantumgnumbers nLSJ where

— . . - =2 > .
S 1is the spin and J = L + S the total angular moment, we will notice

that the total system will be either a singlet or a triplet:
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| (St=1, S*=0)
Q(nLS, n'L'S) = Z (217 + 1) (287 + 1) | T |2

sTLT (92
= 2Q(nL, n'L’) !

T . .
because T is independent from S~ when the exchangs and the spin-orbit
are disregarded.

Consequently, inasmuch as S = %Vin relation to the initial s level:
= , _ j

QLS — n'L'S']=Q[nL — n'L’]. . (93)

On the other hand, if there is the case of an LS coupling we can

demonétra’ge that for a transition coming from the s level:

Q[rLST — n'L'S'J]"

2J,+I ’ {~¥4 .
:=@5%FU@LﬂFUQVLS""LSL (94)

In other words, the partial sectlions are in relation to the sta-

tistical weights:

The Bethe Approximation

in the Case of Positive Ions
The Bethe approximation is generally considered as a simplifica-
tion of the Born approximation, quite valid in the case of high energies
’ : ;4?-4. s .
when the deflection K = ;- Kj is small in relation to the initial

-3
impulse ki of primary electrons.
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We can find the Bethe approximation by‘é pfoéess Which is quite
different and valid for neutral atoris as well é; for bositive ions (212;
It is sufficient to give to the electrostatic interaction term for'any
value of ry and r, its form aé deduced from (42) when Lo% Ly which ac~

tﬁally means that there is a supposition that the collision electron is

still outside the atom: \
- r

A ot (96)
A a

riz

This approximation is in fact valid for the lérge values of LT for

which the small values of r, do almost no intervening.

2
We shall notice that the calculations of infégral radials and of

the terms of the R matrix are then coﬁsiderablf simplified. We have,
in relation to formﬁla (47);

R{nLIL*, n'L'I'L7]

w 1 @

=—4h&m7mﬂfoFMMTﬁWJORM%er(w
for a dibolar transition. The approximation (96) evidently, cannot be
applied in the cases.of elastic terms or to the A = 2 terms of quadri-
polar transitions in which the electrostatic interaction near . the nu-

cleus (r small, L_ small) plays an important part.

T
The Bethe approximation, in additibn, implies another éppfogima;
tion, that which consists in using (88), meaning the disregard for any
effect of strong coupling. | -
It can be shown that, in this case, the very simple expregsion of

Bethe is regained. Having recognized the elements of the matrices

Jpnﬂim”d’ of the probability of the dipolar radiative transition, we



39

obtain (21):
Q[rL — n'L’}

\8/” kf, e (0L L) gl ) (98)
3 n'L" — leny

where I is the ionizati®A/6Yhydrogen.
The oscillator force f is expressed:
Epwr — Bnu Ls

I @« - I2‘ .
- " P !

37 L L 7w |
w‘lere Ly is the largest of the numbers L or L, (99) '

f(n'L’, nL) =

The Gaunt factor g is expressed: S e ’

gk, kn'..' - Z 2\/ 3

w

© . drie '
l‘kll‘k't'ﬁl (100}

In the Case.of neutral atoms the collision electron is presented

after as well as before the collision by plane waves,:

F are the Bessel spherical functions and we regain the well

glhl’) = ‘/ 1 g(("+]’c‘>) (101)

"We shall

utilizing the formula (98),' .The results are presented in Tables ITT

and IV,

Table TTT - T

Table IV
Lithium Series; Q values

the functions of

~known form:

designate the Bethe approximation by CB'I; it consists in

Sodium Series; n values

—
]
Be Il © CIV . 0VI MgX Mg II Si TV Fe XVI
X . X
Bethe BetheIl | Bethel BetheII | Bethel BetheIl | Bethel Bethe Il Bothe T Betho 1T | Bethe I Bethe II | Bethe I Bethe II
V411 1232 1,265 1,254 s22 16,08 19,59 15,04 2,172 2,147
: 26,52 1494 575'323 ?’gzg g:’;y 3,620 1,379 1,368 : 3 23,25 21,22 20,78 16,32 2,250 2,226
2 30,96 18,63 A 4 8'155 3,989 3,878 1,435 1,425 e 285 24.46 2192 17.39 2339 2,302
3 33,61 i;'ég 9’322 8'580 4,190 3,995 1’473 "46§ 4 64,06 34,65 25,81 21,18 2,609 2,583
4 3551 ! 652 8:900 4,338 4,224 1,50 1.49
2 gg';g i‘;gg 1(9)10‘35 9,239 4,487 4,374 1,529 1,512 -
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We can immediately conceive the possibility of performing the

first approximation (96) without performing the second (88), which am---

ounts to taking into account --- in spite of anything —— the effects of

strong coupling. This second method will be designated by Bethe as CB!

IT. It will consist of calculating terms due to-(97) and to then uti-

lize tﬁe.precise formula (87). As it is quite easy to calculate the

integrals which appear in (97) for which analytical equations exist (20),

we gain, in this manner, the possibility of easily obtaining-results

which prove to be considerably better than could be expected.

The figures 4 and 5 present cross-sections Q(2s=# 2p) for Be II

and for C IV, as we have devised them.

We can see that in relation to

the most effective approximation (CB II), it is the part played by the

coupling in CB'ITI, in bringing in the most important correction to the

Bethe approximation CB' I as in the case of Be II.

This phenomenon is

more apparent still in Mg II (22) and is dependent on the intensity of

resonance transitions in Be II and Mg II.

al2s-2p]
- Different approximations in Be IT

vt

[

'%‘(")(r()

solution equations coupled

CRP IR

X ‘-Different approxi—
mations in C IV

Tieem
2 cBI
o3 ceE
e
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" When Z increases, on tﬁe other hand, tﬁe‘péft played by the strong
coupling effects diminishes and there femains; between the two appro:i-
mation;.(that of Coulomb-Born and tha£ of Bethe), the‘only difference
brought about by the use of (96). This difference itself decreases gra-
dually as:we deal with more strongly ionized.élements and this is un-
derstandable when —- as in Figure 3 -— we perform™the decomposition into
sub~-waves.

It seems suitable to express all these effects in terms of an empi-
rical Gaunt factor g defined by the formula:
Q= %éﬁ/(ﬂ i);_;{ en mag -~ (102)
In order to determine the 3 we will calculate'Q by the CB II and

CB I method. We find for the Na series:

Table V
‘Mgl Si1v Fe XVI [
X ) '
CBI CBII Ci1I CBII CB1 CBIL
1,0 0,426 0,282 0,567 0,496 N O,glé 6,308
1; 0,479 ©,352 0,603 0,540 0,837 0,830
2 5 0,524 ©,409 0,635 0,578 0,853 0,850
4 0,661 " 0,579 0,740 0,098 0,930 0,924 -

" We find that not very far from the threshold the g is of the unit
) order. This.means that when Z increases, the Bethe approximation pro-
vides the best results. In several prévious articles (16) (23) it has
been suggested that, in general, the 5 = 0.2 near the excitation thresh-
old. This empiric determination of a is the result of reduction of a

certain number of measures and calculations made for slightly ionized
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elements. It is also in'acéopdance_With thé resalts achieved by *
Burgess (7) for ﬁydrogen ionsy

When 5 increases with Z2 in a much more rapid manner than.forseen
by the Burgess results if means that, contrary to the processes in the
isoelectronic series of H, the oscillating forces decrease with Z, which,
diminishes the effects of strong cduplings. On the other hand, the
effect of the repelling screen of the inner-shell électrons diminishes
-the probabilities of‘approximated collisions for which the Bethe (96)

approximation is no more valid.

Comparison Wi&h Resuits of the
| Semi—Classical Theory
The semiéélassicai %heofy; also called the impact parameter theory,
is widely used in nuclear physics (I) and in collision problems of
heavy particles (2); it has recently been applied by Seaton (17) to the
computation of inelastic coliisions of neutral atoms and.electrons.
A. Burgess has expanded the method to the case of positive ions.
In the majority of cases it is possible to.obtain a good evaluation of
the éection radius in the integration over the collision parameter and
find, in this“mannér, precise cross-—sections for dipolar transitions,
cross~seétions with high'ensrgies and better pesults‘than those achieved
by uéing the Born approximatipn with low eﬁetgigs: |
Qi) = [ PymerRar oy

A _ o . A , :
where the excitation probability Pij(R) jepends mainly upon the oscil-



lation force £(j, i) and where Ro’ the section radius can, géherally,
be considered as being equal to the smallest of the median radii of
Ei or f,.becoming ro.

-The comparison of our results (CB II) with those obtained by
using the semi—classical method (sco) are presented in figures 6 and
7. We can seevthat there is a complete agreement és far as the first
elemants of the series are concerned. The two curves practically co-
incide in the case of Mg IT.

The agreement is satisfactofy for the sodium.(17). In figure 7,

" presenting Na the solid line curve is that of experimental results.
Starting with the Vainstein calculations (19), Sommervillg (18) has
,demonstrated that using a method only slightly different from the Born
iII‘method it is possible to establish 3s -» 3p results only slightly

- different from experimental results. @

200 l\ . Fig. 6 - . 500 ‘ Fl/g./r/’//"
P . . A A . F _
l ./_,../' ) | 400 '/’,,;/——,
' ’ — -
./ MGX ’/’// ‘ .’. |
. e sz, for the Na series
' — | |
] .
(/” :a — - CBE
} | ' : . L30 — o
om l._——’-l
W
’ j ' —-—u—’——’: ’.——// 5
—— . /’——/ —
/.//04-’7:?1 200 ///':—_’
,,,,, _
» o i
I i ,.,.:’:—— -
» —_— f.—_—
'////4;' Be I .
= [ . ;
T e
| . i _—_._-____—.—_——.‘__._—_——-——.,&a_-_—
0‘ 2‘ % 4 § X ‘

For strongly ionized elements the semi-classical approximation be-

.comes less satisfactory. As the Z auguments, the f(ji) decreases with



44

Z while the energy difference AEU' 'ingreases as 22.‘ Thus the re-
iéﬁioﬁj “tends to become zero. Yet,'Séaton (17) has shown that in
fhis case it was ﬁot_possible any more to take Ro =wf< and that it.was
necessary to determine Ro in such a manner a; to find the exact cross-—
sections with high energies.

In>any case the difference does not exceeq 20 p. 100 and the semi-
classicai method makes possible to dbtain, quite easily, a good evalua-
tion of coliision cross—sections.v This shows again, that in the exci-
tation of transitio%s optiéally permissible, large values of the LT play
a prédbminant part, the values with which an impact parameter may be
made to correspond when the collision electron is displaced along a clas—
sic trajectory. |

We would like to take this occasion to thank Prof. M.J. Seaton of
the University College (London) who has introduced us to the collision
theory‘aﬁd we owe to him the existence, in the Meudon Observatory, -of
a groupriﬂterested in this chapter of physics, indiépensable to the
progress of astrophysics as a study of ionized media. We alsd.owe‘graw
titude £o the doctors S.J. Czyzak and A.»Burgess who gave us permissibn
to use articles not yet published. We will end our article by expres-
sing the wish to have more contact among all those in France who are

interested in problemsAof atomic collisions.
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